NOVEL SYNTHESIS OF THE TAUTOMERIC ISOMER OF THE AZIRINOMYCIN ETHYL ESTER AND ITS ANALOGUES

Chung-gi SHIN, Yasuchika YONEZAWA, and Juji YOSHIMURA**

Laboratory of Organic Chemistry, Kanagawa University, Kanagawa-ku, Yokohama 221

**Laboratory of Chemistry for Natural Products, Tokyo Institute of Technology,

Meguro-ku, Tokyo 152

The new and facile syntheses of ethyl 2-azido-2-alkenoate ($\underline{4}$) and ethyl 3-azido-2-alkenoate ($\underline{5}$), and the subsequent photolysis or pyrolysis of $\underline{4}$ and $\underline{5}$ to 2-alkyl-3-ethoxycarbonyl-2H-azirines and 3-alkyl-2-ethoxycarbonyl-2H-azirines, respectively, were accomplished.

The photochemical transformation of ethyl 3-azido-2-butenoate ($\underline{5a}$) to azirinomycin ethyl ester¹⁾ (3-methyl-2-ethoxycarbonyl-2H-azirine ($\underline{7a}$)) suggested that ethyl 2-azido-2-alkenoate ($\underline{4}$) would be an useful starting material for the tautomeric isomers (2-alkyl-3-ethoxycarbonyl-2H-azirines ($\underline{6}$)) of azirinomycin.²⁾

In the previous communication, 3) we have reported that ethyl 2- as well as 3-nitro-2-alkenoate reacted with sodium azide to give a mixture of $\underline{4}$, ethyl 3-azido-2-alkenoate ($\underline{5}$), and 4-ethoxycarbonyl-1,2,3-triazole derivative as the main product. At present, however, no available method of synthesizing $\underline{4}$ (R=alkyl group) has ever been reported, except for ethyl 2-azido-3-arylacrylate derived from the reaction of ethyl azidoacetate with arylaldehyde 4) and methyl 2-azido-acrylate from methyl 2-azido-3-iodopropionate by the elimination of hydrogen iodide. 5)

Because of the pharmacological and the structural interests in the relation between $\underline{6}$ and 3-alkyl-2-ethoxycarbonyl-2H-azirines $(\underline{7})$, the new and facile syntheses of $\underline{4}$ and $\underline{5}$, and the subsequent photolysis or pyrolysis of $\underline{4}$ and $\underline{5}$ to $\underline{6}$ and $\underline{7}$, respectively, were pursued and the general synthetic methods of $\underline{4}$ - $\underline{7}$ were accomplished in this communication. The two reaction pathways are shown in the Scheme 1.

The yields of each step are reasonable and the reaction conditions are remarkably mild.

Ethyl 2-bromo-3-hydroxyalkanoate ($\underline{1}$) was obtained by the reaction of ethyl 2-alkenoate (0.5 mol) with N-bromosuccinimide (NBS) (0.55 mol) in water-THF (300 ml, 1:1 V/V) at room temperature, according to the known method. Acetylation of $\underline{1}$ (0.1 mol) with acetic anhydride (0.15 mol) in the presence of one drop of concentrated sulfuric acid at room temperature gave ethyl 3-acetoxy-2-bromoalkanoate ($\underline{2}$) as a colorless syrup. Then azidation of $\underline{2}$ (0.02 mol) with sodium azide (0.04 mol) in DMF (50 ml) at $\underline{5}^{\circ}$ C gave ethyl 3-acetoxy-2-azidoalkanoate ($\underline{3}$) as a

a;
$$R=CH_3$$
, b; $R=C_2H_5$, c; $R=n-C_3H_7$, d; $R=i-C_3H_7$, e; $R=C_6H_5$

Scheme 1

Table 1. Yields of 1-6 and 7 (%)

R	1	2	3	4	<u>5</u>	<u>6</u>	7
СH ₃	58	83	92	90	88	61 (51) ^{a)}	57 (53) ^{b)}
с ₂ н ₅	51	85	91	81	69	65 (60) ^{a)}	45 (37) ^{b)}
n-C ₃ H ₇	48	86	95	74	38	60 (59) ^{a)}	45 (40) ^{b)}
i-C ₃ H ₇	50	84	92	75	36	60 (68) ^{a)}	40 (38) ^{b)}
С ₆ ^Н 5	45	90	89	95 ^{C)}	35		_

a) Pyrolysis of $\underline{4}$ to $\underline{6}$. b) Pyrolysis of $\underline{5}$ to $\underline{7}$. c) Reference $\underline{4}$ (yield 43%).

colorless syrup, which was subsequently treated with 2 equimolar sodium azide in hexamethyl phosphoramide (HMPA) at room temperature to give the expected $\underline{4}$ as a pale yellow syrup, after elimination of acetoxy group.

On the other hand, it was found that the reaction of ethyl 3-nitro-2-alkeno-ate (0.1 mol) with sodium azide (0.15 mol) at room temperature $^{7)}$ in DMF-THF (120 ml, 5: 1 V/V), instead of DMF, $^{3)}$ underwent selectively to give only $\underline{5}$ in \underline{ca} . 50% yield. In the previous experiment, $^{3)}$ a mixture of $\underline{4}$ and $\underline{5}$ obtained could not be separated. Finally, a solution of $\underline{4}$ (0.02 mol) in dry benzene (70 ml) was irradiated in a stream of nitrogen by means of the external 450 W high-pressure

Table 2.	Physical	constants	and	spectral	data	οf	<u>4</u> ,	<u>6</u> ,	7	and	<u>9</u>
----------	----------	-----------	-----	----------	------	----	------------	------------	---	-----	----------

	_	IR sp	ectrum,	cm ⁻¹ , in	KBr	NMR spe	ctrum,	δ, in CDCl ₃
Compound	Bp ^O C/mmHg	N ₃	C=N	COOEt	C=C	β−Н	(Hz)	[α-H] a)
4a 4b 4c 4d 4e 6a 6b 6c 6d 7a + 9a 7b + 9b 7c + 9c 7d + 9d	syrup syrup syrup [42-43] ^{b)} 22-25/0.3 31-32/0.5 45-46/0.2 30-31/0.5 34-35/0.5 ^{c)} 38-40/0.5 ^{d)} 50-53/0.2 ^{e)} 45-47/0.5 ^{f)}	2110 2110 2110 2110 2110 [2050] [2050] [2050]	1755 1755 1755 1755 1795 1795 1790	1720 1720 1720 1720 1720 1720 1715 1715 1715 1715 1715 1730 [1700] 1730 [1700] 1731 [1706]	1640 1635 1635 1630 1623 1715	6.15t 6.16t 5.96d 6.96s 2.47q 2.44t 2.41t	(7.0) (7.2) (7.6) (9.4) (5.9) (5.6) (4.5) (4.2)	2.42s [4.11s] 2.45s [4.14s] 2.44s [4.12s] 2.48s [4.15s]

a) Data in brackets are that of ketenimine $(\underline{9})$, except the mp of $\underline{4e}$. b) Reference 4. c) Composed of $\underline{7a}$ and $\underline{9a}$ in ratio 5: 1. g) d) Composed of $\underline{7b}$ and $\underline{9b}$ in ratio 3: 5. g) e) Composed of $\underline{7c}$ and $\underline{9c}$ in ratio 3: 4. g) f) Composed of $\underline{7d}$ and $\underline{9d}$ in ratio 3: 4. g) g) Evaluated from the intensity of ring proton in $\underline{7}$ and vinyl proton in $\underline{9}$.

mercury lamp (above 300 nm) at room temperature for about 3 hr until the azido band at 2110 cm⁻¹ had disappeared to give <u>6</u> as a colorless oil, without accompanying with the expected N-ethoxycarbonyl-1-alkene-1-imine (<u>8</u>). However, similar treatment of <u>5</u> in benzene gave a mixture of colorless oily <u>7</u> and ethyl 3-alkyl-iminoacrylate (9).²)

Moreover, according to the method reported, $^{8)}$ pyrolysis of $\underline{5}$ (0.02 mol) in refluxing heptane (50 ml) for 2 hr gave only $\underline{6}$, while the same reaction of $\underline{4}$ gave again a mixture of $\underline{7}$ and $\underline{9}$, an almost same ratio as in the case of photolysis (Table 1). Attempt to isomerize to $\underline{6}$ or $\underline{7}$ conversely by alkali was unsuccessful.

The structures of all the new compounds were characterized spectroscopically and gave satisfactory results in elementary analysis. It is noteworthy that $\underline{6}$ and $\underline{7}$ are distingushable by the $\nu_{C=N}$ in IR spectra and the presence and absence of couplings in the ring proton signals in NMR spectra.

References:

- 1) G. R. Harvey and K. W. Ratts, <u>J. Org. Chem</u>., <u>31</u>, 3907 (1966).
- 2) a) E. O. Stapley, D. Hendlin, M. Jackson, and A. K. Miller, <u>J. Antibiotics</u>, 24, 42 (1971). b) T. W. Miller, E. W. Tristram, and F. J. Wolf, <u>ibid.</u>, 24, 48 (1971).
- 3) C. Shin, Y. Yonezawa, and J. Yoshimura, Tetrahedron Lett., 1974, 7.
- 4) H. Hemetsberger, D. Knittel, and H. Weidmann, Monat. Chem., 100, 1599 (1969).
- 5) A. Hassner and F. W. Fowler, J. Org. Chem., <u>33</u>, 2686 (1968).
- 6) C. O. Guss and R. Rosenthal, J. Amer. Chem. Soc., <u>77</u>, 2549 (1955).
- 7) C. Shin, Y. Yonezawa, H. Narukawa, K. Nanjo, and J. Yoshimura, <u>Bull. Chem.</u>
 <u>Soc. Jpn.</u>, <u>45</u>, 3595 (1972).
- 8) H. Hemetsberger, D. Knittel, and H. Weidmann, Monat. Chem., 101, 161 (1970).

(Received August 25, 1976)